© С.К. Соболев. Лекции по линейной алгебре. Лекция 4.

Лекция 4. Характеристический многочлен линейного оператора, его независимость от базиса. След матрицы линейного оператора и его инвариантность. Характеристический многочлен и собственные значения матрицы. Свойство множества собственных векторов, отвечающих одному и тому же собственному значению. Алгебраическая и геометрическая кратности собственного значения, связь между ними (без док-ва). Теорема о линейной независимости собственных векторов, отвечающих различным собственным значениям. Существование базиса из собственных векторов в случае действительных и некратных корней характеристического уравнения. Матрица линейного оператора в базисе, состоящем из его собственных векторов.

4.1. Характеристический многочлен линейного оператора, его независимость от базиса.

Напомним, что число $\lambda \in \mathbf{R}$ называется *собственным значением* линейного оператора \mathcal{A} , действующего в линейном пространстве L, если найдется ненулевой вектор \mathbf{x} , также называемый *собственным*, такой, что

$$\mathcal{A}(\mathbf{x}) = \lambda \cdot \mathbf{x} \tag{*}$$

Если пространство L конечномерно (размерности n) и имеет базис ε , в котором A – матрица оператора \mathcal{A}, X – столбец координат собственного вектора \mathbf{x} , то (*) равносильно матричному равенству

$$AX = \lambda X \Leftrightarrow AX - \lambda EX = O \Leftrightarrow (A - \lambda E)X = O \tag{**}$$

где E единичная матрица, и O — нулевой столбец. Последнее равенство (**) можно рассматривать как матричную запись системы из n однородных линейных алгебраических уравнений с n неизвестными (координатами собственного вектора x) и матрицей $A - \lambda E$, где λ — собственное значение:

$$\begin{cases} (a_{11} - \lambda)x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + (a_{22} - \lambda)x_2 + a_{23}x_3 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{n(n-1)}x_{n-1} + (a_{nn} - \lambda)x_n = 0. \end{cases}$$
(***)

Матрица

$$A - \lambda E = \begin{pmatrix} a_{11} - \lambda & a_{21} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & \cdots & \cdots & a_{nn} - \lambda \end{pmatrix}$$
 (****)

называется xарактеристической матрицей линейного оператора $\mathcal A$ в базисе ε .

Если собственное значение известно, то искомые координаты собственного вектора образуют ненулевое решение системы (***).

Теорема 4.1. Число $\lambda \in \mathbb{R}$ является собственным значением линейного оператора с матрицей A некотором базисе тогда и только тогда, когда $\det(A - \lambda E) = 0$.

Доказательство вытекает из критерия существования ненулевого решения однородной СЛАУ с квадратной матрицей. ■

[Напомним факты из теории однородных СЛАУ.

- (1) Однородная СЛАУ всегда совместна;
- (2) Однородная СЛАУ имеет ненулевое решение 🗢 ранг её матрицы меньше числа неизвестных;
- (3) Однородная СЛАУ с квадратной матрицей A имеет ненулевое решение \Leftrightarrow det A = 0.

Если рассматривать λ как переменную, то определитель

© С.К. Соболев. Лекции по линейной алгебре. Лекция 4.

$$\det(a-\lambda E) = \det \begin{pmatrix} a_{11}-\lambda & a_{21} & \cdots & a_{1n} \\ a_{21} & a_{22}-\lambda & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & \cdots & \cdots & a_{nn}-\lambda \end{pmatrix} = P_A(\lambda)$$

представляет собой многочлен степени n от λ , называемый **характеристическим**, и собственные числа оператора $\mathcal A$ суть **вещественные корни** этого многочлена. Равенство $\det(A-\lambda E)=0$ есть алгебраическое равнение, называемое тоже **характеристическим**.

Например, при n = 2 характеристический многочлен имеет вид

$$P(\lambda) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix} = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} =$$

$$= \lambda^2 - (a_{11} + a_{12})\lambda + (a_{11}a_{22} - a_{12}a_{21}) = \lambda^2 - \text{Tr}(A)\lambda + \det(A)$$

Оказывается, в общем виде характеристический многочлен имеет вид

$$P(\lambda) = (-1)^n \left(\lambda^n - \alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} - \dots\right) + \alpha_n,$$

где α_k равно сумме всех главных миноров порядка k матрицы $A.,\ k=1,2,...,n$.

(напомним, то **минор порядка** k матрицы A – это определитель, составленный из элементов этой матрицы, стоящих на пересечении каких-то её k строк и каких-то k столбцов. Γ *Павный минор* составлен из элементов на пересечении строк и столбцов с **одинаковыми** номерами).

В частности, всегда $\alpha_1 = a_{11} + a_{22} + ... + a_{nn} = {\rm Tr}\,(A) - {\bf c}$ лед матрицы A, коэффициент α_2 равен сумме всех главных миноров второго порядка матрицы A, например, при n=3:

$$\alpha_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{32} \\ a_{23} & a_{33} \end{vmatrix},$$

 $\alpha_n = \det(A) - \text{её определитель}.$

Мы уже на прошлой лекции доказали, что след матрицы линейного оператора и её определитель не зависят от базиса. Оказывается, **все** коэффициенты характеристического многочлена не зависят от базиса.

Теорема 4.2. *Характеристический многочлен линейного оператора не зависит от базиса.* **Доказательство.** Пусть A – матрица линейного оператора в базисе ε , A' – матрица этого же линейного оператора в другом базисе φ , $P = P_{\varepsilon \to \varphi}$ – матрица перехода, $\det(P) = \Delta \neq 0$,

 $P_{arepsilon}(\lambda)$ и $P_{arphi}(\lambda)$ характеристические многочлены в этих базисах. Тогда:

$$\begin{split} P_{\varphi}(\lambda) &= \det\left(A' - \lambda E\right) = \det\left(P^{-1}AP - \lambda P^{-1}EP\right) = \det\left(P^{-1}(A - \lambda E)P\right) = \\ &= \det(P^{-1}) \cdot \det\left(A' - \lambda E\right) \cdot \det(P) = \frac{1}{\Lambda} \cdot P_{\varepsilon}(\lambda) \cdot \Delta = P_{\varepsilon}(\lambda). \ \blacksquare \end{split}$$

Напомним, что число λ_0 называется корнем многочлена $P(\lambda)$ кратности k, если справедливо представление $P(\lambda) = (\lambda - \lambda_0)^k Q(\lambda)$ и $Q(\lambda_0) \neq 0$. Например, если $P(\lambda) = \lambda (\lambda - 5)^3 (\lambda + 4)^2$, то многочлен $P(\lambda)$ имеет корни $\lambda_1 = 0$ кратности 1, $\lambda_2 = 5$ кратности 2, и $\lambda_3 = -4$ кратности 2. Корень многочлена кратности 1 называется **простым**, корень кратности 2 и больше – кратным корнем. Как известно, многочлен степени n имеет ровно n корней, включая комплексные и с учетом их кратностей. Также вспомним, что многочлен нечетной степени имеет хотя бы один вещественный корень.

Отметим еще одно свойство корней произвольного многочлена Теорема 4.3. (обобщенная теорема Виета): для многочлена

$$P(\lambda) = \lambda^{n} - \alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} - \dots + (-1)^{n} \alpha_n$$

коэффициент α_1 равен сумме всех корней этого многочлена

(всех, включая комплексные, и с учетом кратностей): $\alpha_1 = \lambda_1 + \lambda_2 + ... + \lambda_n$,

коэффициент α_2 равен сумме всех попарных произведений корней многочлена $P(\lambda)$:

$$\alpha_2 = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \dots + \lambda_{n-1} \lambda_n$$
, ...,

коэффициент α_k равен сумме всех произведений корней многочлена $P(\lambda)$, взятых по k множителей в каждом произведении,

коэффициент α_n равен произведению всех корней многочлена $P(\lambda)$ (всех, включая комплексные, и с учетом кратностей): $\alpha_n = \lambda_1 \lambda_2 ... \lambda_n$.

Пример 4.1. Найти многочлен 3-й степени, имеющий корни $\lambda = 3$ (кратности 2) и $\lambda = -5$ (кратности 1).

Решение. Запишем корни так: $\lambda_1 = \lambda_2 = 3$, $\lambda_3 = -5$, коэффициенты искомого многочлена

$$\lambda_3 - \alpha_1 \lambda^2 + \alpha_2 \lambda - \alpha_3$$

ищем по формулам Виета:

$$\alpha_1 = \lambda_1 + \lambda_2 + \lambda_3 = 3 + 3 + (-5) = 1$$

$$\alpha_2 = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3 = 3 \cdot 3 + 3 \cdot (-5) + 3 \cdot (-5) = -21,$$

$$\alpha_3 = \lambda_1 \lambda_2 \lambda_3 = 3 \cdot 3 \cdot (-5) = -45$$
.

Искомое кубическое уравнение: $\lambda^3 - \lambda^2 - 21\lambda + 45 = 0$.

Пример 4.2. Найти собственные числа и собственные векторы линейного оператора с матрицей

$$A = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}$$

Решение. Составим характеристическое уравнение

$$\det(A - \lambda E) = 0 \Leftrightarrow \det\begin{pmatrix} -\lambda & 3 \\ 1 & 2 - \lambda \end{pmatrix} = (-\lambda)(2 - \lambda) - 3 = \lambda^2 - 2\lambda - 3 = 0.$$

Корни: $\lambda_1 = -1$, $\lambda_2 = 3$, оба вещественны, поэтому они являются собственными значениями.

Найдем собственные векторы, им отвечающие как решения однородной СЛАУ с матрицей $A - \lambda E$

1)
$$\lambda = -1 \Rightarrow A - \lambda E = A + E = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}$$
,

соответствующая однородная система

$$\begin{cases} x_1 + x_2 = 0 \\ 3x_1 + 3x_2 = 0 \end{cases}$$
 имеет общее решение $X = (x_1; x_2) = (C; -C) = C(1; -1)$., где C – произвольная

ненулевая константа. Собственный вектор: $f_1 = (1; -1)$, а также любой ненулевой, ему пропорциональный).

2)
$$\lambda = 3 \Rightarrow A - \lambda E = A - 3E = \begin{pmatrix} -3 & 1 \\ 3 & -1 \end{pmatrix}$$
,

соответствующая однородная система

$$\begin{cases} -3x_1+x_2=0 \\ 3x_1-x_2=0 \end{cases}$$
 имеет общее решение $X=(x_1;x_2)=(C;3C)=C(1;3)$. , где C – произвольная

ненулевая константа. Собственный вектор: $f_2 = (1; 3)$, а также любо ненулевой, ему пропорциональный). \blacksquare

4.2. Свойство множества собственных векторов, отвечающих одному и тому же собственному значению. Алгебраическая и геометрическая кратности собственного значения, связь между

Теорема 4.4. Пусть λ — собственное число линейного оператора, действующего в линейном пространстве L, S_{λ} — множество всех собственных векторов этого линейного оператора,

отвечающих данному собственному числу λ , пополненное нулевым вектором, т.е. $S_{\lambda} = \left\{ \boldsymbol{x} \in L \,\middle|\, \mathcal{A}(\boldsymbol{x}) = \lambda \boldsymbol{x} \right\}$. Тогда $S_{\lambda} \sqsubset L$, т.е. S_{λ} — подпространство всего пространства L.

Доказательство. Теорема утверждает, что множество S_{λ} замкнуто относительно линейных комбинаций, т.е. что любая линейная комбинация собственных векторов, отвечающих собственному числу λ , также есть собственный вектор, отвечающий этому же собственному числу λ . В самом деле, если $x, y \in S_{\lambda}$, то это значит, что $\mathcal{A}(x) = \lambda x$, $\mathcal{A}(y) = \lambda y$, и тогда для любых $\alpha, \beta \in \mathbf{R}$:

$$\mathcal{A}(\alpha x + \beta y) = \alpha \mathcal{A}(x) + \beta \mathcal{A}(y) = \alpha \lambda x + \beta \lambda y = \lambda(\alpha x + \beta y)$$
$$\Rightarrow \alpha x + \beta y \in S_{\lambda}. \quad \blacksquare$$

Определение. *Геометрической кратностью* собственного значения λ линейного оператора $\mathcal A$ называется натуральное число $r_g(\lambda)=\dim S_\lambda$ — размерность собственного подпространства S_λ , т.к. количество линейно независимых собственных векторов, отвечающих данному собственному значению λ , она равна $r_g(\lambda)=\dim L-\operatorname{rg}(A-\lambda E)$. *Алгебраической кратностью* собственного значения λ линейного оператора $\mathcal A$ называется натуральное число $r_a(\lambda)$, равное кратности этого числа как корня его характеристического многочлена.

Теорема 4.5. Для любого собственного значения λ линейного оператора его геометрическая кратность не превосходит алгебраической кратности, т.е. $1 \le r_g(\lambda) \le r_a(\lambda)$.

4.3. Теорема о линейной независимости собственных векторов, отвечающих различным собственным значениям.

Теорема 4.6. Собственные векторы, отвечающие попарно различным собственным значениям, линейно независимы.

Доказательство. Пусть даны собственные векторы $\boldsymbol{b_1}, \boldsymbol{b_2}, ..., \boldsymbol{b_k}$, линейного оператора \mathcal{A} , отвечающие собственным значениям $\lambda_1, \lambda_2, ..., \lambda_k$, т.е. $\mathcal{A}(\boldsymbol{b_i}) = \lambda_i \boldsymbol{b_i}$, i = 1, ..., k и $\lambda_i \neq \lambda_j$ при $i \neq j$. Линейную независимость векторов $\boldsymbol{b_1}, \boldsymbol{b_2}, ..., \boldsymbol{b_k}$ докажем по индукции. Для k = 1 вектор $\boldsymbol{b_1} \neq \boldsymbol{0}$ и поэтому линейно независим. Пусть утверждение верно для k векторов, и допустим их (k+1). Предположим, что какая-то линейная комбинация этих векторов дает нулевой вектор:

$$\alpha_1 b_1 + ... + \alpha_k b_k + \alpha_{k+1} b_{k+1} = 0.$$
 (#)

Применим к левой и правой частям (#) оператор А, получим (т.к. он линеен):

$$\mathcal{A}(\alpha_{1}\boldsymbol{b}_{1} + \dots + \alpha_{k}\boldsymbol{b}_{k} + \alpha_{k+1}\boldsymbol{b}_{k+1}) = \mathcal{A}(\boldsymbol{\theta}) = \boldsymbol{\theta} \Rightarrow$$

$$\alpha_{1}\mathcal{A}(\boldsymbol{b}_{1}) + \dots + \alpha_{k}\mathcal{A}(\boldsymbol{b}_{k}) + \alpha_{k+1}\mathcal{A}(\boldsymbol{b}_{k+1}) = \boldsymbol{\theta} \Rightarrow$$

$$\alpha_{1}\lambda_{1}\boldsymbol{b}_{1} + \dots + \alpha_{k}\lambda_{k}\boldsymbol{b}_{k} + \alpha_{k+1}\lambda_{k+1}\boldsymbol{b}_{k+1} = \boldsymbol{\theta}$$

Из последнего равенства вычтем (#), умноженное на λ_{k+1} , получим

$$\underbrace{\alpha_1(\lambda_1 - \lambda_{k+1})}_{\beta_1} \boldsymbol{b}_1 + \dots + \underbrace{\alpha_k(\lambda_k - \lambda_{k+1})}_{\beta_k} \boldsymbol{b}_k = \boldsymbol{0}.$$

По индуктивному предположению, векторы $\boldsymbol{b_1}, \boldsymbol{b_2}, ..., \boldsymbol{b_k}$ линейно независимы, поэтому $\beta_1 = ... = \beta_k = 0$, а поскольку $\lambda_i \neq \lambda_j$ при $i \neq j$, то $\alpha_1 = ... = a_k = 0$. Но так как $\boldsymbol{b_{k+1}} \neq \boldsymbol{0}$, то из (#) следует, что и $\alpha_{k+1} = 0$. Итак, равенство (#) возможно только если $\alpha_1 = ... = \alpha_k = \alpha_{k+1} = 0$. Это и значит что векторы $\boldsymbol{b_1}, ..., \boldsymbol{b_k}, \boldsymbol{b_{k+1}}$ линейно независимы.

Замечание. Подавляющее число студентов математическую индукцию в школе не проходили (можно попросить поднять руки), и в курсе высшей математики в МГТУ им. Н.Э. Баумана – это **первая** теорема, в которой она применяется. Поэтому перед вышеприведенным доказательством хорошо бы принцип математической индукции как следует сформулировать и пояснить. Либо вообще не доказывать эту теорему.

4.4. Существование базиса из собственных векторов в случае действительных и некратных корней характеристического уравнения. Матрица линейного оператора в базисе, состоящем из его собственных векторов.

Предыдущая теорема дает надежду, для данного линейного оператора может существовать базис из его собственных векторов. А какова будет матрица оператора в этом базисе?

Теорема 4.7. Если у линейного оператора \mathcal{A} собственные векторы $\boldsymbol{b}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_n$, отвечающие собственным значениям (не обязательно различным между собой) $\lambda_1, \lambda_2, ..., \lambda_k$, соответственно, образуют базис, то в этом базисе матрица A' оператора \mathcal{A} имеет диагональный вид, и на диагонали стоят (в указанном порядке) собственные числа $\lambda_1, \lambda_2, ..., \lambda_k$:

$$A' = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \tag{##}$$

Доказательство. В самом деле, вспомним, что матрица линейного оператора в базисе $\beta = \{ \boldsymbol{b}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_n \}$ состоит из координат (в этом базисе) образов базисных векторов, записанных по столбнам:

$$\mathcal{A}(\boldsymbol{b}_{1}) = \lambda_{1}\boldsymbol{b}_{1} = \lambda_{1}\boldsymbol{b}_{1} + 0\boldsymbol{b}_{2} + 0\boldsymbol{b}_{3} + \dots + 0\boldsymbol{b}_{n},$$

$$\mathcal{A}(\boldsymbol{b}_{2}) = \lambda_{2}\boldsymbol{b}_{2} = 0\boldsymbol{b}_{1} + \lambda_{2}\boldsymbol{b}_{2} + 0\boldsymbol{b}_{3} + \dots + 0\boldsymbol{b}_{n},$$
....
$$\mathcal{A}(\boldsymbol{b}_{n}) = \lambda_{n}\boldsymbol{b}_{n} = 0\boldsymbol{b}_{1} + +0\boldsymbol{b}_{2} + \dots + 0\boldsymbol{b}_{n-1} + \lambda_{n}\boldsymbol{b}_{n}$$

Отсюда и получаем (##). ■

Определение. Задача диагонализовать матрицу линейного оператора, или (что то же самое) привести матрицу линейного оператора к диагональному виду — значит найти (если это возможно) базис (из собственных векторов) в котором матрица оператора диагональная, и записать эту диагональную матрицу. При этом надо указать матрицу перехода к новому базису, она состоит из координат этих собственных векторов в исходном базисе, записанных по столбцам.

А когда же такой базис из собственных векторов существует? Ответ дает:

Теорема 4.8. Для линейного оператора с матрицей A, действующего в конечномерном линейном пространстве L, существует базис из собственных векторов тогда и только тогда, когда все корни характеристического многочлена вещественны, а алгебраическая кратность каждого такого корня λ равна его геометрической кратности, т.е. числу $\dim L - \operatorname{rg}(A - \lambda E)$.

Следствие 4.9. Если все корни характеристического многочлена линейного оператора вещественны (= действительны) и простые, т.е. кратности 1, то для этого линейного оператора существует базис из собственных векторов.

Пример 4.3. Найти собственные значения и собственные векторы линейного оператора с данной матрицей:

(a)
$$A = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}$$
; (6) $B = \begin{pmatrix} 1 & 4 \\ -1 & 5 \end{pmatrix}$; (B) $C = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & 2 \\ 2 & -1 & 3 \end{pmatrix}$

Диагонализовать матрицу оператора, если это возможно.

Решение. (а) Эту матрицу мы уже рассматривали ранее (см. пример *) и уже нашли собственные числа $\lambda_1 = -1$, $\lambda_2 = 3$ и соответствующие собственные векторы $f_1 = (1; -1)$ и $f_2 = (1; 3)$.

Все корни вещественные кратности 1, диагонализовать можно. Диагональный вид матрицы:

$$A' = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix},$$

матрица перехода к новому базису (из собственных векторов)

$$P = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}.$$

Проверка. Обратная матрица перехода

$$P^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix},$$

матрица оператора в новом базисе:

$$A' = P^{-1}AP = \frac{1}{4} \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 1 & 9 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -4 & 0 \\ 0 & 12 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}.$$

(б) Характеристический многочлен имеет вид $P(\lambda) = \lambda^2 - \alpha_1 \lambda + \alpha_2$, где

 $\alpha_1 = {\rm Tr}(B) = 1 + 5 = 6, \ \alpha_2 = {\rm det}(B) = 9, \$ следовательно $P(\lambda) = \lambda^2 - 6\lambda + 9 = (\lambda - 3)^2, \$ единственное собственное число $\lambda = 3$ алгебраической кратности 2. Матрица

$$B - \lambda E = B - 3E = \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix}$$

имеет ранг 1, поэтому геометрическая кратность значения $\lambda = 3$ равна $r_g(3) = 2 - 1 = 1$, данному собственному числу отвечает только один линейно независимый вектор:

$$\begin{cases} -2x_1 + 4x_2 = 0 \\ -x_1 + 2x_2 = 0 \end{cases} \Leftrightarrow x_1 = 2x_2 \Rightarrow X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = C \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

f = (2; 1) (все остальные собственные векторы ему пропорциональны), следовательно, матрицу этого линейного оператора диагонализовать **нельзя**.

(в) аналогично находим характеристический многочлен $P(\lambda) = \lambda^3 - \alpha_1 \lambda^2 + \alpha_2 \lambda - \alpha_3$, где

$$\alpha_{1} = \operatorname{Tr}(C) = 1 + 1 + 3 = 5,$$

$$\alpha_{2} = \begin{vmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{vmatrix} + \begin{vmatrix} c_{11} & c_{13} \\ c_{31} & c_{33} \end{vmatrix} + \begin{vmatrix} c_{22} & a_{32} \\ c_{23} & a_{33} \end{vmatrix} =$$

$$= \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} = 3 + 1 + 5 = 9,$$

$$\alpha_{3} = \det C = \begin{vmatrix} 1 & -2 & 1 \\ 1 & 1 & 2 \\ 2 & -1 & 3 \end{vmatrix} = 0$$

Характеристическое уравнение $P(\lambda) = \lambda^3 - 5\lambda^2 + 9\lambda = \lambda(\lambda^2 - 5\lambda + 9) = 0$.

Его корни: $\lambda_1=0$, а остальные $\lambda_{2,3}=\frac{-5\pm\sqrt{25-36}}{2}$ — комплексные, следовательно, матрицу и

этого оператора диагональзовать **нельзя**. Собственному числу $\lambda = 0$ отвечает собственный вектор, координаты которого — ненулевые решения однородной СЛАУ с матрицей C - 0E = C:

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_1 + x_2 + 2x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 0 \end{cases}$$

Приведем матрицу этой системы к ступенчатому виду

$$C = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & 2 \\ 2 & -1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 3 & 1 \\ 0 & 3 & 1 \end{pmatrix} \sim \begin{pmatrix} \boxed{0} & -2 & 1 \\ 0 & 3 & \boxed{0} \\ 0 & 0 & 0 \end{pmatrix}$$

Ранг равен 2, поэтому всего один (линейно независимый) собственный вектор. В качестве базисных переменных выберем x_1 и x_3 :

© С.К. Соболев. Лекции по линейной алгебре. Лекция 4.

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 3x_2 + x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 2x_2 - x_3 = 2C + 3C = 5C \\ x_3 = -3x_2 = -3C \\ x_2 = C \end{cases}$$

$$X = C \begin{pmatrix} 5 \\ 1 \\ -3 \end{pmatrix},$$
где $C \in \mathbb{R}$, $C \neq 0$

Собственному значению $\lambda = 0$ отвечает собственный вектор f = (5; 1; -3) (а также любой, ему пропорциональный).

Пример 4.3. можно рассмотреть на лекции частично (сколько успеете).